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Two- and three-dimensional _+J Ising models in the neighborhood of the 
ferromagnetic phase (FP) boundary in the concentration-temperature (/~T) 
plane are studied, investigating the size dependence of interfacial free energies 
calculated by a transfer matrix method. The p and T dependences of two stiff- 
ness exponents relevant to the FP and the nonferromagnetlc ordered phase lead 
to the following results in two dimensions, giving a unified view. It is confirmed 
that the random antiphase state (RAS) exists in contact with the vertical FP 
boundary. Spatial fluctuations are dominant near the vertical boundary, which 
is separated by the Nishimori line from the remaining FP boundary governed 
by thermal fluctuations. The RAS is a kind of Mattis spin glass such that it 
changes to the FP smoothly with nonsingular physical connectivity, but with a 
percolation singularity of its ferromagnetic part. Universal finite-size critical 
amplitudes are consistent with them. Results in three dimensions give only 
suggestions which are similar to the two-dimensional results. These results 
suggest important insight into spin-glass properties in higher dimensions. 
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1. I N T R O D U C T I O N  

In  the last  decade  in teres t  a n d  effort in the spin-glass  (SG)  p r o b l e m  have 

focused m a i n l y  on  s h o r t - r a n g e  S G  models ,  especial ly on  the  _+J I s ing  
modeL (I) O n  one  h an d ,  for the s y mmet r i c  d i s t r i b u t i o n  of the  ! J  m ode l  in  

three  d i m e n s i o n s  (3D),  large scale M o n t e  Car lo  s im u la t i ons  revealed  the 

exis tence of  a n  S G  phase  t r a n s i t i o n  at  a n o n z e r o  t empera tu re ,  ~2'3~ in  
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contrast to its absence in 2D. (4~ These results are consistent with those 
obtained by scaling analyses of interracial free energies (5'6~ and were con- 
firmed by high-temperature expansion. (7~ On the other hand, for asymmetric 
distributions of general nearest-neighbor Ising models, some interesting 
properties have been found when no external field is applied. One is the 
so-called Nishimori line (N-line) in the concentration-temperature (p-T) 
plane along which there is no singularity in energy. (~) Second is the vertical 
phase boundary along the T axis of the ferromagnetic phase (FP). (9) There 
are theoretical (1~ and experimental studies consistent with it; see ref. 11 
for experimental ones. Third is the random antiphase state (RAS) which 
exists adjacent to the FP.! 13'14) Ground-state properties of the RAS in 2D 
have been studied intensively, (13"14) but thermodynamic properties in 2D 
and ground-state properties in higher dimensions are not so clear. 

For convenience below we shall generically call the ordered phase 
without uniform magnetization the random phase (RP), which can be the 
RAS, SG, or other nonferromagnetic ordered phases, confining the defini- 
tion of SG phase to the one found at the symmetric distribution. In this 
sense the latter three properties are not directly associated to SG phases, 
but there are many interesting questions about them or generally the 
behavior in the neighborhood of the FP boundary: 

1. Does the FP have common properties in all the FP region? 

2. What does the N-line really indicate? 

3. Why does the FP have a vertical phase boundary if it is true? 

4. Does the RAS really exist? If so, what are its properties? 

5. Does a mixed phase exist where the FP and the RP coexist? 

Answering these questions is not only necessary for understanding the 
behavior in the asymmetric case, but also may bring some important 
insight into the SG problem. 

It is our purpose to answer these questions by investigating the system 
size dependence of interracial free energies calculated by a transfer matrix 
method. (4) The interfacial approach has been applied to the SG problem by 
several authors. (5'6'15'17 They obtained reasonable results confirmed later in 
spite of fairly small sizes used. This approach has also been developed in 
regular systems using Monte Carlo simulations so as to enable one to use 
finite-size scaling analyses. (15) It was shown to have various advantages 
compared with the conventional approach based on the calculation of 
linear responses such as susceptibilities (including correlation functions). In 
particular, it can investigate properties of ordered states as shown in both 
regular(16 18) and random (5'6'15"1) systems. We make use of the concentra- 
tion and temperature dependences of two stiffness exponents relevant to the 
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FP and the RP which are defined for the size dependence of interfacial free 
energies averaged appropriately [see Eqs. (2.6) and (2.7)]. They represent 
measures of magnetic stiffness in the respective ordered states. Since they 
depend on p and T owing to critical fluctuations (which thus are effective 
values near criticality), one can extract some important information on 
fluctuations. Making use of it with the help of finite-size scaling, <m) we 
deduce the following interesting results in 2D which answer most of the 
questions made at the beginning in a unified way. The phase diagram of 
the RAS is determined clearly. Spatial fluctuations yield the vertical FP 
boundary, sharing the FP region with thermal fluctuations by the N-line. 
The RAS is a Mattis SG (2~ with nonsingular continuation to the FP with 
respect to physical connectivity. We also consider percolative properties of 
the physical connectivity in ordered phases and the relations ~8) between 
uniform magnetization and Edwards-Anderson order parameter. <l) They 
give further evidence for the result that the RAS in 2D is a Mattis SG 
which is obtained from stiffness exponents. 

The paper is organized as follows. In Section 2, the stiffness exponents 
and amplitudes as well as interfacial free energies are defined and their 
general properties proper to random systems are given. Then we give a way 
to determine phase boundaries from the stiffness exponents and amplitudes. 
In Section 3 most of the numerical results in 2D and 3D are given and 
discussed, though they are only simply given for the 3D model. We also 
show a phase diagram obtained for the 2D model. In Section 4 we first 
give general properties of the stiffness exponent in the case of a pure 
ferromagnet, using finite-size scaling. Then, extending them to the random 
case, we derive properties of spatial and thermal fluctuations in the 2D FP 
and RAS from the numerical results given in Section 3, yielding a unified 
picture that describes the behavior of the FP and the RAS in 2D. In 
Section 5 we give further evidence for the RAS in 2D being a Mattis SG 
from the viewpoint of percolation and using Nishimori's relations. In 
Section 6 universal finite-size critical amplitudes of the interfacial free 
energy are examined and found to be consistent with the unified view 
obtained. In the last section we give some implications for properties of SG 
and RAS in >~3D deduced from the results obtained in Sections 4 and 5 
and give a summary and discussion. 

2. S T I F F N E S S  E X P O N E N T S  A N D  P H A S E  B O U N D A R I E S  

We consider the _ J  Ising model in two and three dimensions with the 
Hamiltonian 

H =  - ~ J~S+Sg (S+= _1) (2.1) 
( i , j )  
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where the interactions {Ju} are a set of independent random values taking 
J and - J only between nearest neighboring spins and have the distribution 

P(Jo) = Pa(Jo - J) + (1 - p ) a ( j  0 + J) (2.2) 

where p is the probability of the ferromagnetic coupling. Our systems are 
on square and simple cubic lattices whose sizes are L + 1 (in units of the 
lattice constant) in the x direction and L in the other direction(s) (y when 
d =  2, y and z when d =  3). The spins at the boundaries in the x direction 
are fixed either all up (parallel boundary conditions, PBC) or up at one 
boundary and down at the other (antiparallel boundary conditions, 
APBC). In the remaining direction(s) periodic boundary conditions 
are imposed. Therefore, we have L e I ( L - 1 )  spin variables in the 
d-dimensional lattice system. For a bond configuration {J} in a system of 
linear size L, we denote the total free energy for the PBC as F(LP){J} = 
- T l n Z e x p ( - H / T )  (in units of k B = l )  and that for the APBC as 
F~aP){J}. Then the interfacial free energy is defined as 

AFL { J} = F(LaP){ J} - F(cP) { J} (2.3) 

Each bulk free energy is calculated by the numerical transfer matrix 
method. (4) 

Although we call AF the interracial free energy, it is not certain 
whether AF always reflects a single interface as in the pure Ising 
ferromagnets. If the external force exerted through BCs is conjugate to the 
order parameter of an ordered phase, then it makes an interface across the 
system. However, in random systems arbitrary BCs including the PBC and 
APBC are only incompletely conjugate to any order parameters. For the 
ordered phase without uniform magnetization, these BCs may rather make 
other distortions, such as fractional interfaces (or open domain walls) 
which are pinned by the boundaries. However, it still remains unchanged 
that AF is a response to the strong force applied through BCs(16); it tells 
one whether or not and how the force is transferred from one to the other 
boundary, that is, whether a long-range order (LRO) exists or not and 
how stiff it is, by the property of how it goes to infinity or vanishes as 
L--+ oo. In general both the BCs yield some distortions or defects. If the 
PBC gives a smaller (larger) distortion than the APBC, then one gets 
AFL{J} > 0  (<0)  at low temperatures, hence a distribution of AF. Thus it 
is natural to consider its mean and mean deviation/IS): 

WL(p, T) = ( AFL{J} ) j (2.4) 

~VL(p, T)= [ ( AFL{ J} Z) j - ( AFL{ J } )211/2 (2.5) 
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where ( . . . ) ~  denotes the bond average. We assume that only these two 
quantities are relevant to the phase transitions. We(p, T) is relevant to the 
FP in such a way that WL(p, T) vanishes at the phase boundary. Since 
ff/L(P, T) arises owing to the randomness, we naturally assume that it is 
relevant to the RP. As it arises also in the FP, one cannot easily separate 
the contributions from the FP  and the RP to see if they coexist or not. So 
one gets the phase boundary for the RP by W ~  0 only in the case where 
the FP is absent. We also assume that W and l~ are only the singular parts 
in the critical region at least for a single ordered phase, which is justified 
later by their behavior above the critical temperature obtained in our 
calculations. 

In order to treat these quantities in a qualitative way we introduce 
stiffness exponents, following Ueno et  al., (16) 

WL( p, T)=A(p, T)L a(p'T) (2.6) 

ff/L(P, T ) = A ( p ,  T)L a(p'r) (2.7) 

We expect that W and if /vanish above the respective critical points for 
L--* oo, or equivalently a < 0 and 8 < 0 for L < oo. We also expect that a 
and 8 become constant (a0 and 8o) within the region of a single ordered 
phase relevant to it as L--* oo; a0 = d - 1  for the FP. In finite sizes the 
expectation holds asymptotically for L much larger than the correlation 
length (4, ~ relevant to W, 1~, respectively). For  L < ~ and L < ~', a and 8 
depend generally on p and T, but show little explicit dependence on L in 
the size extension of usual simulations as clarified in Section 4. We shall 
make use of these properties in Sections 4 and 5 to analyze the details of 
ordered phases. 

In order to see the relation between the force and the interfacial free 
energy below the critical point, it is convenient to consider the total 
uniform magnetization at the boundaries M(L~){J} (c~ = 1, 2) that arises (at 
T = 0 )  when the PBC and APBC are replaced by the free BCs. Let the 
mean and mean deviation for them be BL ~ and BL ~, respectively. With the 
PBC and APBC imposed, then part of the force works on an LRO in 
proportion to M (1) or M (2), which yields a = ~b and 8 = ~. When an LRO 
is ferromagnetic, one obtains ~b = d - 1  and ~ =  �89162 in L--* oo (except at 
p =  1), because it is homogeneous and spatial fluctuations in the LRO 
become uncorrelated at large distances. When it is not ferromagnetic, B = 0 
and B -r 0, which gives only ~ = �89 1) for L ~ oo. When the FP and RP 
coexist there are contributions to if" from both and usually one of them is 
dominant. 

In finite systems one has to consider the finite-size effects which arise 
from inhomogeneity of an LRO because not only thermal fluctuations, but 
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also spatial fluctuations are not negligible. Leaving this problem in to 
Section 4, we consider qualitative relations between ~b and ~ for L < oo in 
the FP region. Let I(p) be a correlation length that characterizes spatial 
fluctuations from the average absolute magnetization at T = 0 ;  /(p)-- 
~(p, T = 0 )  given later in Section4. Then ~=�89 ( r  for l(p)~L. 
However, one may get ~ >  or < �89 for l(p)>> L even at T =  0, thus yielding 

> or < �89 though both are effective values. Actually, ~ > �89 is found in the 
2D FP near the phase boundary. 

The following should be remarked. If only the FP exists, one obtains 
a/(~ = ~/~ as the stiffness exponent for the unit strength of force; thus, ~ --- �89 
in L ~ o o .  We have confirmed this result in the case of a 2D pure 
ferromagnet by applying random fields at the boundaries. Therefore 2~ is 
the right expression of the stiffness exponent, which should be valid also for 
the RP. This is considered in Section 7 to examine previous studies on the 
SG. 

According to the above discussions we obtain the following properties 
of stiffness exponents to determine the phase boundaries between the 
ordered phases and the disordered phase (DP): 

a=0 ,  ~ = 0  (2.8) 

at the boundary between the FP and DP, and 

a < 0 ,  a = 0  (2.9) 

at the boundary between the RP and DP. 
At the boundary of the FP related to the RP one may have 

which is in fact found in 2D and 3D. This suggests either of the following 

The RP coexists with the FP if they are independent phases. This 
is the case as seen in the infinite-range model, (21) where there is 
a mixed phase of the SG and the FP. (22) 

(ii) Both phases are only two different features of a kind of Mattis 
SG; in other words, they are not independent. 

In the first case one is naturally interested in the phase boundary 
between both phases. One cannot use a and ~ to find it, because a does not 
change and the FP dominates l~ there, but the amplitude A(p, T) of 
W(p, T) is useful for it. When the two phases are independent they com- 
pete owing to the finite magnitude and the finite density of spin variables. 

a = 0 ,  h > 0  (2.10) 

c a s e s .  

(i) 
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Then the appearance of the RP should reduce the amplitude unless the 
space occupied by the RP has dimensions less than a + 1 in L < 0o. Thus, 
at the phase boundary between the competing RP and FP, 

A(p, T) is singular (2.11 ) 

in L ~ or. For L < oe the singular behavior becomes diffuse, but we can 
still expect that the reduction gets more appreciable as one gets deeper 
inside the RP. This should be used in the region where A is determined 
without ambiguity. 

3. N U M E R I C A L  R E S U L T S  

For the square lattice system of size L = 6, 8, 10, 12, we calculated 
transfer matrices at almost 100 points in the p-T plane located at intervals 
of 0.01 in p and 0.15 in T. For the simple cubic system of size L = 3, 4, the 
calculated points are almost 50 in number. For each given concentration 
we made calculations for 2000 (2D) and 4000 (3D) samples of bond con- 
figurations chosen at random and averaged over them to estimate a(p, T) 
and ~(p, T) using least square fitting. We show the results in detail for 2D, 
but only roughly for 3D, since the sizes are too small. Results for T =  0 in 
2D are reported in a separate paper. ~23~ 

3.1. T w o  D imens ions  

Figure l shows the temperature dependence of WL(p, T) and 
ff/L(P, T) fixed with L =  10 for p~>0.86. The W exhibits a similar 
monotonic decreasing function of T for all p given there. Thus, there is no 
crossing among the curves. On the other hand, as T is raised, l~ follows 
a weakly decreasing curve for 0.94 ~< p ~< 0.98 (of which only p = 0.98 is 
given for clarity), while the decrease is larger and the slope changes only 
little for p<0 .94  (only p=0 .86 ,  0.88, 0.90 are given), thus showing 
crossings between both groups. 

Figure 2a shows the T dependence of stiffness exponents a for p ~> 0.86. 
Every a is almost constant ao(p) at low temperatures a little below 
Tm ~ 1.0, where (p,,,, Tm) is the multicritical point at which the FP and the 
RP phase boundaries meet, and it gradually decreases above Tm and, 
except for p = 0.86 and 0.88, finally crosses the T axis. The T independence 
of a means inactive thermal fluctuations, as discussed in Section 4. From 
these results and other calculated ones we obtain the phase boundary for 
the FP given in Fig. 3, using Eqs. (2.8) and (2.10). The phase boundary is 
vertical except in the region near the multicritical point and the critical 
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concentration for the ferromagnetic order (at T = 0) is p / =  0.883. The sub- 
stitution of p iL0.883 in the N-line equation [exp(-2J/T)= ( 1 - p ) / p ]  
leads to the point (p• = pf, T~ = 1.01). These values deviate slightly from 
(p,,, T,,,) which are given and discussed later. For p = 1, T C = 2.31, which 
is about 2% larger than the rigorous value 2.269 .... 124) We attribute this 
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error to the smallness of the system size and the rigid boundaries. The 
latter always gives larger values and the error in T c is proportional to L 1iv 

with a prefactor of O(1). (19) Then it is reasonable to consider that the 
errors weakly depend only on p and T. In fact, the phase boundary given 
in Fig. 3 is very smooth, consistent with this. 

In Fig. 2b each exponent fi for p < 0.96 also shows a T dependence 
similar to that for a, though it does not become constant at low tem- 
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Nishimori line. 

peratures. This dependence is reasonable because usually the order 
becomes stiffer as T is reduced. On the other hand, for p ~> 0.96, ~ exhibits 
unusual behavior in spite of the fact that most of the spins should be in the 
same direction. Since this behavior becomes more prominent as p gets close 
to 1, we cannot consider it intrinsic. It is probably because the average 
number of the antiferromagnetic bonds 2 L ( L - 1 ) ( 1 - - p )  is too small for 
small L and 1 - p  ~ 1 to extract thermodynamic properties; it is 3.6 for 
p = 0.98 and L = 10. Therefore we will not discuss the cases of p >/0.96. It 
is also useful to see the p dependence of the exponents at T = 0.15 in Fig. 4. 
One sees there apparently that Eq. (2.10) can be applied. The phase 
boundary of the RP for the DP is obtained using Eq. (2.9) as shown in 
Fig. 3. At T=0.15  it is present at p ~-0.86. According to work reported 
elsewhere, (23) pc(RP) - 0.854 -t- 0.002 and ps=  0.885 + 0.001 at T =  0. Since 
our RP region at very low temperatures is very close to 0.85 <~ p ~< 0.9 
obtained by Barahona et aL (13) and Maynard and Rammal, (I4) we assign 
the RP to the RAS. We note that fi increases with p across p / t o  p = 0.94, 
which is considered in Section 4 in studying the properties of the RAS. 

The phase boundary of the RAS against the DP meets that of the FP 
at the multicritical point: Pm "~ 0.89, T m =  1.05. These are a little different 
from those at the point (p• T• Since the errors become larger near the 
multicritical point because critical fluctuations in both phases take place, 
we can conclude that the phase boundary is vertical within the accuracy of 
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the calculation. As to the RAS, although the errors of our calculations are 
not negligible, since they show the same tendency as already mentioned, we 
are assured of at least the existence of the single RP in a narrow region 
adjacent to the FP. 

Figure 5 shows the amplitude A(p, T) of W. For p > 0.88, where the 
FP can exist, each A decreases gradually as T increases to the temperature 
where a is almost constant, ao(p), while it increases at higher temperatures. 
This property of weak T dependence below Tm is the consistent relation 
between A and a to be expected so long as the definition of A is valid. Each 
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A does not exhibit any singular b~ehavior and related reduction within the 
accuracy of calculation. From Eq. (2.11) this indicates that the RAS and 
FP are not competing. 

Let us compare our results with those of others. All of our phase 
boundaries agree qualitatively with the one obtained by Ozeki and 
Nishimori. (25) Our result for the multicritical point is in fair agreement with 
theirs, Pm " ~  0.89, T m ~ 0.96. Of interest is the critical concentration of non- 
frustrated plaquettes above which an infinite network of them develops; in 
other words, for p < pc(nfp) there are fracture lines (or contours of zero 
energy) across the 2D system. (13'14) According to previous studies 
pc(nfp) = 0.86 _+ 0.02, (26) 0.85. (13'14) These are close to our result p =0.86 at 
T=0.15  and also pc(RP)=0.85.  This agreement is quite convincing 
because the interracial free energy vanishes for p < p,(nfp) in 2D unless 
entropy works for coupling as seen in highly degenerate regular 
models. (16~27) For  the FP, p f  is also close to 0.88__0.02, (4) 0.9, (28) 
0.89_+ 0.02, (13) and 0.88. (12) Therefore the RAS exists at least between p j  

and pc(nfp). These properties on percolation are considered again in 
Section 5. 

3.2.  T h r e e  D i m e n s i O n s  

Figure 6 shows the T dependence of a and 8. There are considerable 
errors in the results of a for p = 1: Tc -~ 5.1 much larger than 4.511 obtained 
by high-temperature expansion (29) and a > 2  at 0.3 < T <  3.0. Thus, our 
present results give only suggestions. We obtained pf-~ 0.75 and Tc ~ 1.5, 
which are fairly close to the result p i =  0.767 and Ts= 1.86 obtained by 
Monte Carlo simulations. (25) Figure 7 shows the p dependence of a and 
at T=0.3 .  In the intermediate-p region ~ ( ~ 0 . 1 ) > 0 ,  which is consistent 
with the existence of the SG phase. (2,~'s v) There is a narrow region which 
could be assigned to the RAS if the relative errors were almost the same for 
W and 1~ and weakly depend on p. Then, since Eq. (2.10) is satisfied and 
the T and p dependences of a and ~ are similar to those in 2D, the same 
conclusion as in 2D is suggested: the RAS is a Mattis SG. It is interesting 
that ~ seems continuous at the boundary of the RAS and SG. 

Finally, we note that the decreasing T dependence of W and if/reveals 
little possibility of ordering due to entropy gains (16'27) in 2D and 3D, which 
has been considered for the mechanism of reentrant phase transitions by 
others. This is because, when the order of a low-temperature phase arises 
owing to entropy gains, A F  has a positive slope at low temperatures, 
namely, A S = - t ? A F / t 3 T < O  as typically seen in 3D antiferromagnetic 
Potts models. (16) In addition, no coexistence of two ordered phases has 
been obtained in that case. (3~ 
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4. S T I F F N E S S  E X P O N E N T S  A N D  F L U C T U A T I O N S  

F o l l o w i n g  Fisher ,  (19) we a s sume  finite-size scal ing for the interracia l  
free energy,  

WL( p, T)-- w(L/~(p, T) ) (4.1) 

tTVL(p, T)= #(L/~(p, T)) (4.2) 

Fig. 6. 
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concentrations p =  1 (O), 0.8 (x), 0.75 (D), 0.7 (0) .  
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Fig. 7. 
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where r and ~" are the correlation lengths characteristic for the FP and the 
RP, respectively. We also assume that Eq. (4.2) is valid whenever c~ > �89 

Before going to their properties, it is instructive first to discuss finite- 
size scaling in the pure ferromagnet,/16'19) 

AFL( T) = f( tL l/v) (4.3) 

where t= (T-Tc)/Tc and ~ ~ [tl-v. and the scaling function f(x) has an 
asymptotic form 

{2 x , x--* - o o  (4.4) 
f (x)~ +fix, x--,O 

with ao = d -  1. The condition ~ >> 1 is necessary for Eq. (4.4) to hold. We 
also have another expression AFL(T ) = A ( T ) L  a(T), which is always valid 
with a(T)= ao for ~ ~ L below Tc irrespective of whether r >> 1 or not. 
Further, it is also approximately valid even for ~ >> L because the explicit 
dependence on L is usually negligible, that is, (18) 

~?a / 6a 

Thus, a(T) is very useful from the following points of view. First, a(Tc)= 0 
gives To, consistent with finite-size scaling (4.3). Second, since a - - d - 1  
for L>>~ while a < d - 1  and depends on T for ~ > L ,  then one easily 
obtains the crossover temperature where r  L. Third, when A(T) is little 
dependent on T, which appears a little below the crossover temperature, it 
means that ~ ~-O(1), namely, negligible thermal fluctuations. For  the last 
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one can approximately use that a(T) is independent of T instead of the 
property of A. We extend these analyses for the pure case to the random 
one, assuming the same asymptotic form as Eq. (4.4) for w(x) and #(x). 

4.1. Fluctuat ions Related to W(p, T) in 2D 

Let us first focus on the region near the vertical boundary of the FP. 
We have obtained in Section 3 that a(p, T) is independent of T and 
strongly dependent on p below about Tm and also a < d - 1 .  It is 
reasonable to consider that ~(p, T) has almost the same properties as 
a(p, T) except the last one. Then it follows that ~>>L from its p 
dependence. Therefore spatial fluctuations are strong (which off course 
arise owing to frustrations), while thermal ones are negligible. These results 
imply the fractal nature of the FP in finite systems with fractal dimensions 
d F < d, which is the result already obtained from a: df = a + 1 < O. 

The results obtained above on fluctuations in the FP lead to impor- 
tant properties of the FP as well as to reasonable interpretations of some 
properties previously obtained. The properties of fluctuations in the FP 
near the vertical boundary obtained above are nothing but a translation of 
the vertical boundary in terms of fluctuations or ~(p, T). This is because 
being vertical means absence of the effect of thermal fluctuations on the FP 
and thus a phase transition governed by spatial fluctuations; otherwise one 
should cross the boundary as T is raised with p fixed as seen above Tm. 
Thus, one obtains for the correlation length 

~(p, ~r)~~ v, (4.5) 

with critical exponent Vp, where ~ = ( p -  Pm)/Pm" 
Thermal fluctuations are dominant in the thermal critical regime at 

high temperatures near the remaining boundary. Thus, the cross point and 
perhaps the N-line divide the two regimes. The results obtained above lead 
to the following expression of the finite-size scaling in each regime: 
WL(p, T ) = w r ( x  ) with x = t L  1/~ for the thermal critical regime and 
=Wp(y) with y = e L  1/~ for the spatial critical regime. Here wr(x) and 
Wp(y) have the same asymptotic form as Eq. (4.4). Near the multicritical 
point, WL(p, T) becomes Eq. (4.1) with ~(p, T) given by 

~(p, T)= t-~k(et ~) (4.6) 

where t is replaced by t = ( T -  Tm)/Tm, 0 = V/Vp, and the scaling function 
k(x) has an asymptotic form, 

~'const, z ~ 0o (4.7) 
k(z) ~ (z-~p, z ~ 0 
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There is a lowest value Zo of z~that satisfies k(zo)=const.  Then this 
et -~ = Zo line should be equal to the N-line. Since the N-line is linear at the 
multicritical point irrespective of the dimensionality, then v = Vp. This is a 
required property because the FP is a single phase which includes no other 
phase with uniform magnetization, so that any critical behavior along its 
boundary should be the same except at the multicritical point. 

We have obtained the interesting properties on the FP based on the 
results calculated in the 2D model, but we consider that those are 
unchanged in any higher dimensions because the vertical boundary and the 
N-line exist irrespective of the dimension. (s'9) 

4.2. F luc tua t ions  Related to  t~/(p, T) in 2D 

We have obtained above that thermal fluctuations have little influence 
on the FP near the vertical boundary. Then a also should be T inde- 
pendent, provided that the contribution to W comes only from the FP. 
However, a depends on T (see Fig. lb), which reveals that ~'(p, T) > L and 
the contribution comes only from the RP, i.e., the RAS. Thus, this indicates 
the existence of the RAS in the FP with ~ > L, which is consistent with the 
result (2.10) obtained in Section 3. 

As already discussed in Section 2, there are two cases for this situation. 
There is a mixed phase in case (i) where both phases are independent. 
However, the absence of singularity in A(p, T) obtained in Section 3 
reveals a smooth variation of physical connectivity within the FP, rejecting 
case (i) and accepting case (ii). Further, case (ii) is also consistent with the 
p dependence of 8: it increases with p near the vertical boundary where 
8 > �89 while competeness should decrease a as p increases. This case is also 
suggested by the harmonious relation between both phases seen in the 
phase diagram of Fig. 3. From this diagram one recognizes that the two 
boundaries with the DP obtained from Eqs. ( 2 . 8 ) a n d  (2.9) form a 
naturally curved curve as a whole except around the multicritical point. 
Since the Mattis SG has no reference to spin directions, the average of the 
absolute interracial free energy is relevant to it. Defining 

WM(p, T) = { W 2 + I~2} I/2 , , ~  L aM(p'T) (4.8) 

we also calculated the critical temperature from a M =0. We obtained a 
smooth curve through the multicritical point, though the new boundary 
slightly extends the RAS region which is attributed to W >  or > W even at 
points where a < 0. 
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5. FURTHER EVIDENCE FOR A M A T T I S  
SPIN GLASS IN 2D 

From the viewpoint of percolation let us show evidence for the argu- 
ment that the RAS is a kind of Mattis SG. We have confirmed that the 
single RAS exists at pc(nfp)< p < pf in 2D. So its order lies on an infinite 
network of nonfrustrated plaquettes, ~13'14~ that is, physical connection due 
to energy gains. Further, the RAS changes to the FP at pf. Since the 
network gets larger and larger with p, this means the continuity of physical 
connectivity, in other words, the average value of absolute local magnetiza- 
tion is not zero at Ps and increases with no singularity with p. Thus, this 
is a percolation transition of the ferromagnetic component of the physical 
connectivity. This consideration is consistent with the property that the FP  
near its vertical boundary is governed only by spatial fluctuations obtained 
in Section 4. 

We also have additional evidence for our argument. Suppose there is 
an infinite isotropic network of connected sites on a plane lattice and try 
to make another infinite network on the same lattice independent of the 
established one without disturbing it. Then it is impossible because, 
wherever one chooses the starting point for a network, it is completely 
surrounded by part of the established network; equivalently, one can 
always find two routes that connect two arbitrary sites (except those on the 
dangling part) on the established network and surround the starting point. 
Thus, it is only a kind of Mattis SG that is allowed to exist in the 2D 
system. 

Furthermore, our argument is consistent with the following rigorous 
relations between m and Q obtained by Nishimori, ~8) which hold inside the 
FP region in the thermodynamic limit: 

f >Q, T> Tp m =Q, T=Tp (5.1) 

<Q, T<Tp 

where m =  ( ( S i ) r ) j  (>0) ,  Q ( 2 = ( S i ) r ) s ,  and Tp is the temperature on 
the N-line with p. The Q is decomposed into a ferromagnetic part m 2 and 
a remaining part Q -  m 2. The latter does not always represent the RP, but 
one can safely consider that the main contribution of Q - m  2 comes from 
the RP when m2~  Q - r n  2, because Q - m  2 does not change much as m 
approaches zero in the case where Q does not vanish simultaneously. Using 
Eq. (5.1), one obtains 

Q - m2 > m - m2 }> m2 (5.2) 

822/64/1-2-16 
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Fig. 8. A spin configuration of the ground state near the vertical FP boundary obtained 
previously(m; closed and open circles represent up and down spins with rigid connectivity, 
and unmarked sites represent loose spins; the solid line is a magnetic wall which separates 
two domains. See ref. 14 for details. 

in the F P  near the vertical boundary  where m ~ 1. Thus, the RP exists 
inside the F P  region and is dominan t  over the FP  near the boundary.  Since 
the RP  is the RAS in 2D, the above results are consistent with those 
obtained in Section 4.2 from the properties of  8 and a. Figure 8 shows one 
of the g round  states of the RAS obtained previously (13'14) near pf= 0.89. It 
has large domains  in up and down states. Thus, there is a large fluctuation 
Q -  m 2 compared  with the contr ibut ion m 2 from the mean near the vertical 

boundary.  

6. E X A M I N A T I O N  OF U N I V E R S A L  F INITE-SIZE 
CRIT ICAL  A M P L I T U D E S  

It is also of considerable interest to calculate the universal finite-size 
critical ampli tude of the interface free energy at each phase boundary.  It is 
considered to be a universal value independent of details within the same 
universality class. (3L) Following Pr ivman and Fisher, we define it as 

follows: 

u~(pc, Tc)= WL(pc, Tc)/Tc = const 

u2(pc, To)= WL(pc, Tc)/Tm = const 

fi = 17VL(pc, T~)/pc = const 

( T >  T~) 
(6.1a) 

( T <  T~) 

(6.1b) 

For  u2 we have taken into account  that the relevant scaling field is only p, 
and ul and u2 should agree at the multicritieal point. For  fi, apparent ly p 
(pJ for the full nota t ion)  is an appropria te  factor to guarantee inde- 
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pendence of concentration. Figure 9 shows the T dependences of these 
quantities. They are fairly large, but there are some characteristic features: 
as T increases, u and fi decrease smoothly except at and near Tm for u. This 
general tendency is probably due to the influence of the rigid boundaries 
on W and i f /mainly  through T c. At p =  1 we get W(1, Tc=2 .31)=2 .88  
and this gives u=0.62,  which is much smaller than the rigorous result: 
1.530... for Tc=2.269 .... (32~ This suggests that the overestimation of T c 
leads to a smaller value of u. We consider that the effect of rigid boundaries 
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Fig. 9. Universal finite-size critica| amplitudes of  interfacial free energy. (a) u for mean W 
and (b) z~ for mean deviat ion W vs. temperature for the two-dimensionM mode]; u is defined 
by dividing into u I for T >  Tm and u2 for T <  T m [see Eq. (6.1)]. 
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depends on the degree of the connectivity at T =  0, i.e., a(p, 0) and a(p, 0), 
which depend on p because of finite sizes. For  larger a(p, 0) the boundary 
force is transmitted with weaker decay even above the true Tc, pushing the 
critical point higher. Since for L < o% a and a at very low temperatures 
decrease as p is reduced (recall that a for p > 0.96 has been excluded), then 
the rigid boundaries have a weaker effect on u and ~ for smaller p. 

Therefore these results are consistent with what we expect from the 
results obtained in Sections 4 and 5: Ul and u2 be constant and equal 
except at Tm and ~ is constant including Tin. Since there occurs a crossover 
from the thermally-fluctuating regime to the spatially-fluctuating one at the 
multicritical point, u should be singular there. However, I~ reflects the 
Mattis SG through Tm for p < 0.96, so that fi should be nonsingular. Thus, 
the present results suggest the existence of universal finite-size critical 
amplitudes also in random systems. 

7. C O M M E N T ,  S U M M A R Y ,  A N D  D I S C U S S I O N  

7.1. Comments  on Propert ies of  the RAS 
and the SG in d > 2  

If the vertical boundary of the FP exists in d > 2  as argued by 
Nishimori, (9) then there must be no possibility except that this is a percola- 
tion transition only due to spatial fluctuations as obtained in 2D. It follows 
then that the RAS exists outside the vertical boundary as a Mattis SG. Our 
results in 2D and 3D suggest that the RAS region reduces as d increases 
and finally vanishes at d =  Go. (22/ 

We consider in general that there is no vertical phase boundary of an 
ordered phase whose order is associated only with physical connectivity 
due to energy gains. Otherwise, since the connectivity is critical at the 
boundary, there is a strong effect from thermal fluctuations and so the 
boundary cannot be vertical. This can also be applied to the SG. Thus the 
boundary of the SG cannot be vertical, so there are always reentrant spin 
glasses for all d >  2 so long as the SG order arises owing to energy gains. 
It seems very unlikely that the SG order occurs owing to entropy gains at 
temperatures above the RAS boundary because then it must be disordered 
at lower temperatures below the RAS, which needs a high degree of 
ground-state degeneracy equivalent to a finite value of entropy. (16'26) 

In Section 2, we obtained that 2a is the right stiffness exponent of the 
RP. In addition, we also obtained that spatial fluctuations are large even 
at very low temperatures around pc(nfp) and pf. Even in the intermediate-p 
region we consider that spatial fluctuations should be taken into account 
when one estimates the stiffness exponent from finite-size systems. Although 
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they are not always critical, they always exist in random systems. These 
inherent spatial fluctuations have a characteristic length l(p = 1/2) in the 
SG region discussed in Section 2. It is no doubt larger than the correlation 
length of frustrations which may be several lattice constants. Thus, if it is 
estimated in systems of L < l(p), it is lower than the true value. Previously 
the stiffness exponent of the SG was calculated in small sizes to get 
28=0.17 for L = 3 ~ 6  (5) and 8 = 0 . 2  for L = 2 ~ 4 J  6) Thus, it is dangerous 
to use these values to discuss, say, the stability of the SG against an 
external field even if 2~ is used. (33) 

7.2. S u m m a r y  and Discussions 

Let us briefly summarize the present study to see how various proper- 
ties are derived from the calculated results. 

(i) a - - 0  and ~ = 0 in 2D yield the phase boundaries between the 
FP, RAS, and the DP, which confirms the vertical FP boundary. 

(ii) a < d - 1  and its T independence in 2D yield dominance of 
spatial fluctuations in the ferromagnetic order near the vertical boundary, 
which is a close translation of the vertical boundary. 

(iii) It follows then through scaling of ~ that the N-line divides the 
FP regime into two parts dominated by either of thermal and spatial 
fluctuations. 

(iv) Together with the properties of stiffness amplitude A, the p and 
T dependences of a and ~ reveal in 2D that the RAS is a Mattis SG and 
changes to the FP with nonsingular W and singular W. 

(v) The last result is further evidenced by percolation considera- 
tions and is consistent with the rigorous relations between m and Q. 

(vi) The above results suggest even in d >  2 that spatial fluctuations 
are dominant near the vertical FP boundary bounded by the N-line and 
that the RAS and the reentrant SG exist even in d >  2. 

(vii) It is pointed out that 2~ is the right stiffness exponent for the 
RP and spatial fluctuations should be taken into account in random 
systems. 

In the 2D case of the present study, we have obtained reasonable 
results for the sizes L = 6 ~ 12, though a much larger number of bond con- 
figurations are required to estimate reliable values of exponent v. These 
results have revealed that the interfacial method is useful and powerful even 
in random systems. Thus, in order to obtain reasonable results in 3D one 
needs to calculate systems of sizes at least around L = 10, including reliable 
data at T ~  To. 
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Fina l ly  we ad d  the  fo l lowing  comment /34~ N i s h i m o r i  der ived  the vert i-  

cal F P  b o u n d a r y  by  a rg u i n g  tha t  e n t r o p y  for the d i s t r i b u t i o n  of f rust ra-  
t ions  o n  the  N - l i n e  is s ingu la r  at  the mul t ic r i t i ca l  poin t .  (9~ This  a r g u m e n t  

is no t  i ncons i s t en t  wi th  ho ld ing  tha t  Pm is equa l  to the crit ical  concen t r a -  
t ion  PS of the f e r romagne t i c  order.  There  is the poss ib i l i ty  of the existence 
of a n o t h e r  s ingu la r i ty  on  the N- l i ne  c o r r e s p o n d i n g  to pc(nfp).  
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